UPSC Exam  >  UPSC Questions  >  Passage IIChemical pesticides lose their role... Start Learning for Free
Passage II

Chemical pesticides lose their role in sustainable agriculture if the pests evolve resistance. The evolution of the pesticide resistance is simply natural selection in action. It is almost certain to occur when vast numbers of a genetically variable population are killed. One or a few individuals may be unusually resistant (perhaps because they possess an enzyme that can detoxify the pesticide). If the pesticide is applied repeatedly, each successive generation of the pest will contain a larger proportion of resistant individuals. Pests typically have a high intrinsic rate of reproduction, and so a few individuals in one generation may give rise to hundreds or thousands in the next, and resistance spreads very rapidly in a population.
This problem was often ignored in the past, even though the first case of DDT (dichlorodiphenyltrichloroethane) resistance was reported as early as 1946. There is an exponential increase in the numbers of invertebrates that have evolved resistance and in the number pesticides against which resistance has evolved. Resistance has been recorded in every family of arthropod pests (including dipterans such as mosquitoes and house flies, as well as beetles, moths, wasps, fleas, lice and mites) as well as in weeds and plant pathogens. Take the Alabama leaf worm, a moth pest of cotton, as an example. It has developed resistance in one or more regions of the world to aldrin, DDT, dieldrin, endrin, lindane and toxaphene.
If chemical pesticides brought nothing but problems, - if their use was intrinsically and acutely unsustainable – then they would already have fallen out of widespread use. This has not happened. Instead, their rate of production has increased rapidly. The ratio of cost to benefit for the individual agricultural producer has remained in favour of pesticide use. In the USA, insecticides have been estimated to benefit the agricultural products to the tune of around $5 for every $1 spent.
Moreover, in many poorer countries, the prospect of imminent mass starvation, or of an epidemic disease, are so frightening that the social and health costs of using pesticides have to be ignored. In general the use of pesticides is justified by objective measures such as 'lives saved', 'economic efficiency of food production' and 'total food produced'. In these very fundamental senses, their use may be described as sustainable. In practice, sustainability depends on continually developing new pesticides that keep at least one step ahead of the pests – pesticides that are less persistent, biodegradable and more accurately targeted at the pests.
 
 
Q. Why is the use of chemical pesticides generally justified by giving the examples of poor and developing countries?
1. Developed countries can afford to do away with use of pesticides by adapting to organic farming, but it is imperative for poor and developing countries to use chemical pesticides.
2. In poor and developing countries, the pesticide addresses the problem of epidemic diseases of crops and eases the food problem.
3. The social and health costs of pesticide use are generally ignored in poor and developing countries.
Which of the statements given above is/are correct?
  • a)
    1 only
  • b)
    1 and 2 only
  • c)
    2 only
  • d)
    1, 2 and 3
Correct answer is option 'C'. Can you explain this answer?
Verified Answer
Passage IIChemical pesticides lose their role in sustainable agricultu...
Solution: c) You might feel why is statement 3 wrong? Because it mentions both poor and developing countries have to ignore the costs. In the passage, its only poor countries that ignore the cost. 
Moreover, statement 1’s first part is out of context generalizations. Lesson: Read the statements very carefully and keep cross checking for minute differences with the passage.
View all questions of this test
Most Upvoted Answer
Passage IIChemical pesticides lose their role in sustainable agricultu...
Justification for Pesticide Use in Poor and Developing Countries
The justification for the use of chemical pesticides in poor and developing countries is multifaceted, particularly when considering their immediate needs and challenges.
1. Addressing Epidemic Diseases and Food Security
- In regions where food security is a pressing concern, chemical pesticides play a crucial role in protecting crops from pests and diseases that threaten yield.
- These pesticides help mitigate the risk of crop failures, which can lead to famine and malnutrition.
2. Economic Necessity
- For many farmers in developing countries, the use of chemical pesticides is economically justified due to the immediate benefits they provide.
- The increase in crop yields directly translates to better income and sustenance for families who rely on agriculture for survival.
3. Social and Health Cost Considerations
- The passage highlights that the social and health costs associated with pesticide use are often ignored in these contexts.
- Given the dire situations faced by many in poor and developing countries, the urgency to address food shortages and disease outbreaks often outweighs the potential health risks posed by pesticides.
Conclusion
In summary, option 2 is the most accurate statement as it captures the essence of why pesticides are deemed necessary in poor and developing nations. While statements 1 and 3 hold merit, they do not fully encapsulate the primary reasons for pesticide use in these contexts. Thus, the correct answer is option 'C'.
Explore Courses for UPSC exam

Top Courses for UPSC

Passage IIChemical pesticides lose their role in sustainable agriculture if the pests evolve resistance. The evolution of the pesticide resistance is simply natural selection in action. It is almost certain to occur when vast numbers of a genetically variable population are killed. One or a few individuals may be unusually resistant (perhaps because they possess an enzyme that can detoxify the pesticide). If the pesticide is applied repeatedly, each successive generation of the pest will contain a larger proportion of resistant individuals. Pests typically have a high intrinsic rate of reproduction, and so a few individuals in one generation may give rise to hundreds or thousands in the next, and resistance spreads very rapidly in a population.This problem was often ignored in the past, even though the first case of DDT (dichlorodiphenyltrichloroethane) resistance was reported as early as 1946. There is an exponential increase in the numbers of invertebrates that have evolved resistance and in the number pesticides against which resistance has evolved. Resistance has been recorded in every family of arthropod pests (including dipterans such as mosquitoes and house flies, as well as beetles, moths, wasps, fleas, lice and mites) as well as in weeds and plant pathogens. Take the Alabama leaf worm, a moth pest of cotton, as an example. It has developed resistance in one or more regions of the world to aldrin, DDT, dieldrin, endrin, lindane and toxaphene.If chemical pesticides brought nothing but problems, - if their use was intrinsically and acutely unsustainable – then they would already have fallen out of widespread use. This has not happened. Instead, their rate of production has increased rapidly. The ratio of cost to benefit for the individual agricultural producer has remained in favour of pesticide use. In the USA, insecticides have been estimated to benefit the agricultural products to the tune of around $5 for every $1 spent.Moreover, in many poorer countries, the prospect of imminent mass starvation, or of an epidemic disease, are so frightening that the social and health costs of using pesticides have to be ignored. In general the use of pesticides is justified by objective measures such as 'lives saved', 'economic efficiency of food production' and 'total food produced'. In these very fundamental senses, their use may be described as sustainable. In practice, sustainability depends on continually developing new pesticides that keep at least one step ahead of the pests – pesticides that are less persistent, biodegradable and more accurately targeted at the pests.Q. Why is the use of chemical pesticides generally justified by giving the examples of poor and developing countries?1. Developed countries can afford to do away with use of pesticides by adapting to organic farming, but it is imperative for poor and developing countries to use chemical pesticides.2. In poor and developing countries, the pesticide addresses the problem of epidemic diseases of crops and eases the food problem.3. The social and health costs of pesticide use are generally ignored in poor and developing countries. Which of the statements given above is/are correct?a)1 onlyb)1 and 2 onlyc)2 onlyd)1, 2 and 3Correct answer is option 'C'. Can you explain this answer?
Question Description
Passage IIChemical pesticides lose their role in sustainable agriculture if the pests evolve resistance. The evolution of the pesticide resistance is simply natural selection in action. It is almost certain to occur when vast numbers of a genetically variable population are killed. One or a few individuals may be unusually resistant (perhaps because they possess an enzyme that can detoxify the pesticide). If the pesticide is applied repeatedly, each successive generation of the pest will contain a larger proportion of resistant individuals. Pests typically have a high intrinsic rate of reproduction, and so a few individuals in one generation may give rise to hundreds or thousands in the next, and resistance spreads very rapidly in a population.This problem was often ignored in the past, even though the first case of DDT (dichlorodiphenyltrichloroethane) resistance was reported as early as 1946. There is an exponential increase in the numbers of invertebrates that have evolved resistance and in the number pesticides against which resistance has evolved. Resistance has been recorded in every family of arthropod pests (including dipterans such as mosquitoes and house flies, as well as beetles, moths, wasps, fleas, lice and mites) as well as in weeds and plant pathogens. Take the Alabama leaf worm, a moth pest of cotton, as an example. It has developed resistance in one or more regions of the world to aldrin, DDT, dieldrin, endrin, lindane and toxaphene.If chemical pesticides brought nothing but problems, - if their use was intrinsically and acutely unsustainable – then they would already have fallen out of widespread use. This has not happened. Instead, their rate of production has increased rapidly. The ratio of cost to benefit for the individual agricultural producer has remained in favour of pesticide use. In the USA, insecticides have been estimated to benefit the agricultural products to the tune of around $5 for every $1 spent.Moreover, in many poorer countries, the prospect of imminent mass starvation, or of an epidemic disease, are so frightening that the social and health costs of using pesticides have to be ignored. In general the use of pesticides is justified by objective measures such as 'lives saved', 'economic efficiency of food production' and 'total food produced'. In these very fundamental senses, their use may be described as sustainable. In practice, sustainability depends on continually developing new pesticides that keep at least one step ahead of the pests – pesticides that are less persistent, biodegradable and more accurately targeted at the pests.Q. Why is the use of chemical pesticides generally justified by giving the examples of poor and developing countries?1. Developed countries can afford to do away with use of pesticides by adapting to organic farming, but it is imperative for poor and developing countries to use chemical pesticides.2. In poor and developing countries, the pesticide addresses the problem of epidemic diseases of crops and eases the food problem.3. The social and health costs of pesticide use are generally ignored in poor and developing countries. Which of the statements given above is/are correct?a)1 onlyb)1 and 2 onlyc)2 onlyd)1, 2 and 3Correct answer is option 'C'. Can you explain this answer? for UPSC 2024 is part of UPSC preparation. The Question and answers have been prepared according to the UPSC exam syllabus. Information about Passage IIChemical pesticides lose their role in sustainable agriculture if the pests evolve resistance. The evolution of the pesticide resistance is simply natural selection in action. It is almost certain to occur when vast numbers of a genetically variable population are killed. One or a few individuals may be unusually resistant (perhaps because they possess an enzyme that can detoxify the pesticide). If the pesticide is applied repeatedly, each successive generation of the pest will contain a larger proportion of resistant individuals. Pests typically have a high intrinsic rate of reproduction, and so a few individuals in one generation may give rise to hundreds or thousands in the next, and resistance spreads very rapidly in a population.This problem was often ignored in the past, even though the first case of DDT (dichlorodiphenyltrichloroethane) resistance was reported as early as 1946. There is an exponential increase in the numbers of invertebrates that have evolved resistance and in the number pesticides against which resistance has evolved. Resistance has been recorded in every family of arthropod pests (including dipterans such as mosquitoes and house flies, as well as beetles, moths, wasps, fleas, lice and mites) as well as in weeds and plant pathogens. Take the Alabama leaf worm, a moth pest of cotton, as an example. It has developed resistance in one or more regions of the world to aldrin, DDT, dieldrin, endrin, lindane and toxaphene.If chemical pesticides brought nothing but problems, - if their use was intrinsically and acutely unsustainable – then they would already have fallen out of widespread use. This has not happened. Instead, their rate of production has increased rapidly. The ratio of cost to benefit for the individual agricultural producer has remained in favour of pesticide use. In the USA, insecticides have been estimated to benefit the agricultural products to the tune of around $5 for every $1 spent.Moreover, in many poorer countries, the prospect of imminent mass starvation, or of an epidemic disease, are so frightening that the social and health costs of using pesticides have to be ignored. In general the use of pesticides is justified by objective measures such as 'lives saved', 'economic efficiency of food production' and 'total food produced'. In these very fundamental senses, their use may be described as sustainable. In practice, sustainability depends on continually developing new pesticides that keep at least one step ahead of the pests – pesticides that are less persistent, biodegradable and more accurately targeted at the pests.Q. Why is the use of chemical pesticides generally justified by giving the examples of poor and developing countries?1. Developed countries can afford to do away with use of pesticides by adapting to organic farming, but it is imperative for poor and developing countries to use chemical pesticides.2. In poor and developing countries, the pesticide addresses the problem of epidemic diseases of crops and eases the food problem.3. The social and health costs of pesticide use are generally ignored in poor and developing countries. Which of the statements given above is/are correct?a)1 onlyb)1 and 2 onlyc)2 onlyd)1, 2 and 3Correct answer is option 'C'. Can you explain this answer? covers all topics & solutions for UPSC 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Passage IIChemical pesticides lose their role in sustainable agriculture if the pests evolve resistance. The evolution of the pesticide resistance is simply natural selection in action. It is almost certain to occur when vast numbers of a genetically variable population are killed. One or a few individuals may be unusually resistant (perhaps because they possess an enzyme that can detoxify the pesticide). If the pesticide is applied repeatedly, each successive generation of the pest will contain a larger proportion of resistant individuals. Pests typically have a high intrinsic rate of reproduction, and so a few individuals in one generation may give rise to hundreds or thousands in the next, and resistance spreads very rapidly in a population.This problem was often ignored in the past, even though the first case of DDT (dichlorodiphenyltrichloroethane) resistance was reported as early as 1946. There is an exponential increase in the numbers of invertebrates that have evolved resistance and in the number pesticides against which resistance has evolved. Resistance has been recorded in every family of arthropod pests (including dipterans such as mosquitoes and house flies, as well as beetles, moths, wasps, fleas, lice and mites) as well as in weeds and plant pathogens. Take the Alabama leaf worm, a moth pest of cotton, as an example. It has developed resistance in one or more regions of the world to aldrin, DDT, dieldrin, endrin, lindane and toxaphene.If chemical pesticides brought nothing but problems, - if their use was intrinsically and acutely unsustainable – then they would already have fallen out of widespread use. This has not happened. Instead, their rate of production has increased rapidly. The ratio of cost to benefit for the individual agricultural producer has remained in favour of pesticide use. In the USA, insecticides have been estimated to benefit the agricultural products to the tune of around $5 for every $1 spent.Moreover, in many poorer countries, the prospect of imminent mass starvation, or of an epidemic disease, are so frightening that the social and health costs of using pesticides have to be ignored. In general the use of pesticides is justified by objective measures such as 'lives saved', 'economic efficiency of food production' and 'total food produced'. In these very fundamental senses, their use may be described as sustainable. In practice, sustainability depends on continually developing new pesticides that keep at least one step ahead of the pests – pesticides that are less persistent, biodegradable and more accurately targeted at the pests.Q. Why is the use of chemical pesticides generally justified by giving the examples of poor and developing countries?1. Developed countries can afford to do away with use of pesticides by adapting to organic farming, but it is imperative for poor and developing countries to use chemical pesticides.2. In poor and developing countries, the pesticide addresses the problem of epidemic diseases of crops and eases the food problem.3. The social and health costs of pesticide use are generally ignored in poor and developing countries. Which of the statements given above is/are correct?a)1 onlyb)1 and 2 onlyc)2 onlyd)1, 2 and 3Correct answer is option 'C'. Can you explain this answer?.
Solutions for Passage IIChemical pesticides lose their role in sustainable agriculture if the pests evolve resistance. The evolution of the pesticide resistance is simply natural selection in action. It is almost certain to occur when vast numbers of a genetically variable population are killed. One or a few individuals may be unusually resistant (perhaps because they possess an enzyme that can detoxify the pesticide). If the pesticide is applied repeatedly, each successive generation of the pest will contain a larger proportion of resistant individuals. Pests typically have a high intrinsic rate of reproduction, and so a few individuals in one generation may give rise to hundreds or thousands in the next, and resistance spreads very rapidly in a population.This problem was often ignored in the past, even though the first case of DDT (dichlorodiphenyltrichloroethane) resistance was reported as early as 1946. There is an exponential increase in the numbers of invertebrates that have evolved resistance and in the number pesticides against which resistance has evolved. Resistance has been recorded in every family of arthropod pests (including dipterans such as mosquitoes and house flies, as well as beetles, moths, wasps, fleas, lice and mites) as well as in weeds and plant pathogens. Take the Alabama leaf worm, a moth pest of cotton, as an example. It has developed resistance in one or more regions of the world to aldrin, DDT, dieldrin, endrin, lindane and toxaphene.If chemical pesticides brought nothing but problems, - if their use was intrinsically and acutely unsustainable – then they would already have fallen out of widespread use. This has not happened. Instead, their rate of production has increased rapidly. The ratio of cost to benefit for the individual agricultural producer has remained in favour of pesticide use. In the USA, insecticides have been estimated to benefit the agricultural products to the tune of around $5 for every $1 spent.Moreover, in many poorer countries, the prospect of imminent mass starvation, or of an epidemic disease, are so frightening that the social and health costs of using pesticides have to be ignored. In general the use of pesticides is justified by objective measures such as 'lives saved', 'economic efficiency of food production' and 'total food produced'. In these very fundamental senses, their use may be described as sustainable. In practice, sustainability depends on continually developing new pesticides that keep at least one step ahead of the pests – pesticides that are less persistent, biodegradable and more accurately targeted at the pests.Q. Why is the use of chemical pesticides generally justified by giving the examples of poor and developing countries?1. Developed countries can afford to do away with use of pesticides by adapting to organic farming, but it is imperative for poor and developing countries to use chemical pesticides.2. In poor and developing countries, the pesticide addresses the problem of epidemic diseases of crops and eases the food problem.3. The social and health costs of pesticide use are generally ignored in poor and developing countries. Which of the statements given above is/are correct?a)1 onlyb)1 and 2 onlyc)2 onlyd)1, 2 and 3Correct answer is option 'C'. Can you explain this answer? in English & in Hindi are available as part of our courses for UPSC. Download more important topics, notes, lectures and mock test series for UPSC Exam by signing up for free.
Here you can find the meaning of Passage IIChemical pesticides lose their role in sustainable agriculture if the pests evolve resistance. The evolution of the pesticide resistance is simply natural selection in action. It is almost certain to occur when vast numbers of a genetically variable population are killed. One or a few individuals may be unusually resistant (perhaps because they possess an enzyme that can detoxify the pesticide). If the pesticide is applied repeatedly, each successive generation of the pest will contain a larger proportion of resistant individuals. Pests typically have a high intrinsic rate of reproduction, and so a few individuals in one generation may give rise to hundreds or thousands in the next, and resistance spreads very rapidly in a population.This problem was often ignored in the past, even though the first case of DDT (dichlorodiphenyltrichloroethane) resistance was reported as early as 1946. There is an exponential increase in the numbers of invertebrates that have evolved resistance and in the number pesticides against which resistance has evolved. Resistance has been recorded in every family of arthropod pests (including dipterans such as mosquitoes and house flies, as well as beetles, moths, wasps, fleas, lice and mites) as well as in weeds and plant pathogens. Take the Alabama leaf worm, a moth pest of cotton, as an example. It has developed resistance in one or more regions of the world to aldrin, DDT, dieldrin, endrin, lindane and toxaphene.If chemical pesticides brought nothing but problems, - if their use was intrinsically and acutely unsustainable – then they would already have fallen out of widespread use. This has not happened. Instead, their rate of production has increased rapidly. The ratio of cost to benefit for the individual agricultural producer has remained in favour of pesticide use. In the USA, insecticides have been estimated to benefit the agricultural products to the tune of around $5 for every $1 spent.Moreover, in many poorer countries, the prospect of imminent mass starvation, or of an epidemic disease, are so frightening that the social and health costs of using pesticides have to be ignored. In general the use of pesticides is justified by objective measures such as 'lives saved', 'economic efficiency of food production' and 'total food produced'. In these very fundamental senses, their use may be described as sustainable. In practice, sustainability depends on continually developing new pesticides that keep at least one step ahead of the pests – pesticides that are less persistent, biodegradable and more accurately targeted at the pests.Q. Why is the use of chemical pesticides generally justified by giving the examples of poor and developing countries?1. Developed countries can afford to do away with use of pesticides by adapting to organic farming, but it is imperative for poor and developing countries to use chemical pesticides.2. In poor and developing countries, the pesticide addresses the problem of epidemic diseases of crops and eases the food problem.3. The social and health costs of pesticide use are generally ignored in poor and developing countries. Which of the statements given above is/are correct?a)1 onlyb)1 and 2 onlyc)2 onlyd)1, 2 and 3Correct answer is option 'C'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of Passage IIChemical pesticides lose their role in sustainable agriculture if the pests evolve resistance. The evolution of the pesticide resistance is simply natural selection in action. It is almost certain to occur when vast numbers of a genetically variable population are killed. One or a few individuals may be unusually resistant (perhaps because they possess an enzyme that can detoxify the pesticide). If the pesticide is applied repeatedly, each successive generation of the pest will contain a larger proportion of resistant individuals. Pests typically have a high intrinsic rate of reproduction, and so a few individuals in one generation may give rise to hundreds or thousands in the next, and resistance spreads very rapidly in a population.This problem was often ignored in the past, even though the first case of DDT (dichlorodiphenyltrichloroethane) resistance was reported as early as 1946. There is an exponential increase in the numbers of invertebrates that have evolved resistance and in the number pesticides against which resistance has evolved. Resistance has been recorded in every family of arthropod pests (including dipterans such as mosquitoes and house flies, as well as beetles, moths, wasps, fleas, lice and mites) as well as in weeds and plant pathogens. Take the Alabama leaf worm, a moth pest of cotton, as an example. It has developed resistance in one or more regions of the world to aldrin, DDT, dieldrin, endrin, lindane and toxaphene.If chemical pesticides brought nothing but problems, - if their use was intrinsically and acutely unsustainable – then they would already have fallen out of widespread use. This has not happened. Instead, their rate of production has increased rapidly. The ratio of cost to benefit for the individual agricultural producer has remained in favour of pesticide use. In the USA, insecticides have been estimated to benefit the agricultural products to the tune of around $5 for every $1 spent.Moreover, in many poorer countries, the prospect of imminent mass starvation, or of an epidemic disease, are so frightening that the social and health costs of using pesticides have to be ignored. In general the use of pesticides is justified by objective measures such as 'lives saved', 'economic efficiency of food production' and 'total food produced'. In these very fundamental senses, their use may be described as sustainable. In practice, sustainability depends on continually developing new pesticides that keep at least one step ahead of the pests – pesticides that are less persistent, biodegradable and more accurately targeted at the pests.Q. Why is the use of chemical pesticides generally justified by giving the examples of poor and developing countries?1. Developed countries can afford to do away with use of pesticides by adapting to organic farming, but it is imperative for poor and developing countries to use chemical pesticides.2. In poor and developing countries, the pesticide addresses the problem of epidemic diseases of crops and eases the food problem.3. The social and health costs of pesticide use are generally ignored in poor and developing countries. Which of the statements given above is/are correct?a)1 onlyb)1 and 2 onlyc)2 onlyd)1, 2 and 3Correct answer is option 'C'. Can you explain this answer?, a detailed solution for Passage IIChemical pesticides lose their role in sustainable agriculture if the pests evolve resistance. The evolution of the pesticide resistance is simply natural selection in action. It is almost certain to occur when vast numbers of a genetically variable population are killed. One or a few individuals may be unusually resistant (perhaps because they possess an enzyme that can detoxify the pesticide). If the pesticide is applied repeatedly, each successive generation of the pest will contain a larger proportion of resistant individuals. Pests typically have a high intrinsic rate of reproduction, and so a few individuals in one generation may give rise to hundreds or thousands in the next, and resistance spreads very rapidly in a population.This problem was often ignored in the past, even though the first case of DDT (dichlorodiphenyltrichloroethane) resistance was reported as early as 1946. There is an exponential increase in the numbers of invertebrates that have evolved resistance and in the number pesticides against which resistance has evolved. Resistance has been recorded in every family of arthropod pests (including dipterans such as mosquitoes and house flies, as well as beetles, moths, wasps, fleas, lice and mites) as well as in weeds and plant pathogens. Take the Alabama leaf worm, a moth pest of cotton, as an example. It has developed resistance in one or more regions of the world to aldrin, DDT, dieldrin, endrin, lindane and toxaphene.If chemical pesticides brought nothing but problems, - if their use was intrinsically and acutely unsustainable – then they would already have fallen out of widespread use. This has not happened. Instead, their rate of production has increased rapidly. The ratio of cost to benefit for the individual agricultural producer has remained in favour of pesticide use. In the USA, insecticides have been estimated to benefit the agricultural products to the tune of around $5 for every $1 spent.Moreover, in many poorer countries, the prospect of imminent mass starvation, or of an epidemic disease, are so frightening that the social and health costs of using pesticides have to be ignored. In general the use of pesticides is justified by objective measures such as 'lives saved', 'economic efficiency of food production' and 'total food produced'. In these very fundamental senses, their use may be described as sustainable. In practice, sustainability depends on continually developing new pesticides that keep at least one step ahead of the pests – pesticides that are less persistent, biodegradable and more accurately targeted at the pests.Q. Why is the use of chemical pesticides generally justified by giving the examples of poor and developing countries?1. Developed countries can afford to do away with use of pesticides by adapting to organic farming, but it is imperative for poor and developing countries to use chemical pesticides.2. In poor and developing countries, the pesticide addresses the problem of epidemic diseases of crops and eases the food problem.3. The social and health costs of pesticide use are generally ignored in poor and developing countries. Which of the statements given above is/are correct?a)1 onlyb)1 and 2 onlyc)2 onlyd)1, 2 and 3Correct answer is option 'C'. Can you explain this answer? has been provided alongside types of Passage IIChemical pesticides lose their role in sustainable agriculture if the pests evolve resistance. The evolution of the pesticide resistance is simply natural selection in action. It is almost certain to occur when vast numbers of a genetically variable population are killed. One or a few individuals may be unusually resistant (perhaps because they possess an enzyme that can detoxify the pesticide). If the pesticide is applied repeatedly, each successive generation of the pest will contain a larger proportion of resistant individuals. Pests typically have a high intrinsic rate of reproduction, and so a few individuals in one generation may give rise to hundreds or thousands in the next, and resistance spreads very rapidly in a population.This problem was often ignored in the past, even though the first case of DDT (dichlorodiphenyltrichloroethane) resistance was reported as early as 1946. There is an exponential increase in the numbers of invertebrates that have evolved resistance and in the number pesticides against which resistance has evolved. Resistance has been recorded in every family of arthropod pests (including dipterans such as mosquitoes and house flies, as well as beetles, moths, wasps, fleas, lice and mites) as well as in weeds and plant pathogens. Take the Alabama leaf worm, a moth pest of cotton, as an example. It has developed resistance in one or more regions of the world to aldrin, DDT, dieldrin, endrin, lindane and toxaphene.If chemical pesticides brought nothing but problems, - if their use was intrinsically and acutely unsustainable – then they would already have fallen out of widespread use. This has not happened. Instead, their rate of production has increased rapidly. The ratio of cost to benefit for the individual agricultural producer has remained in favour of pesticide use. In the USA, insecticides have been estimated to benefit the agricultural products to the tune of around $5 for every $1 spent.Moreover, in many poorer countries, the prospect of imminent mass starvation, or of an epidemic disease, are so frightening that the social and health costs of using pesticides have to be ignored. In general the use of pesticides is justified by objective measures such as 'lives saved', 'economic efficiency of food production' and 'total food produced'. In these very fundamental senses, their use may be described as sustainable. In practice, sustainability depends on continually developing new pesticides that keep at least one step ahead of the pests – pesticides that are less persistent, biodegradable and more accurately targeted at the pests.Q. Why is the use of chemical pesticides generally justified by giving the examples of poor and developing countries?1. Developed countries can afford to do away with use of pesticides by adapting to organic farming, but it is imperative for poor and developing countries to use chemical pesticides.2. In poor and developing countries, the pesticide addresses the problem of epidemic diseases of crops and eases the food problem.3. The social and health costs of pesticide use are generally ignored in poor and developing countries. Which of the statements given above is/are correct?a)1 onlyb)1 and 2 onlyc)2 onlyd)1, 2 and 3Correct answer is option 'C'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice Passage IIChemical pesticides lose their role in sustainable agriculture if the pests evolve resistance. The evolution of the pesticide resistance is simply natural selection in action. It is almost certain to occur when vast numbers of a genetically variable population are killed. One or a few individuals may be unusually resistant (perhaps because they possess an enzyme that can detoxify the pesticide). If the pesticide is applied repeatedly, each successive generation of the pest will contain a larger proportion of resistant individuals. Pests typically have a high intrinsic rate of reproduction, and so a few individuals in one generation may give rise to hundreds or thousands in the next, and resistance spreads very rapidly in a population.This problem was often ignored in the past, even though the first case of DDT (dichlorodiphenyltrichloroethane) resistance was reported as early as 1946. There is an exponential increase in the numbers of invertebrates that have evolved resistance and in the number pesticides against which resistance has evolved. Resistance has been recorded in every family of arthropod pests (including dipterans such as mosquitoes and house flies, as well as beetles, moths, wasps, fleas, lice and mites) as well as in weeds and plant pathogens. Take the Alabama leaf worm, a moth pest of cotton, as an example. It has developed resistance in one or more regions of the world to aldrin, DDT, dieldrin, endrin, lindane and toxaphene.If chemical pesticides brought nothing but problems, - if their use was intrinsically and acutely unsustainable – then they would already have fallen out of widespread use. This has not happened. Instead, their rate of production has increased rapidly. The ratio of cost to benefit for the individual agricultural producer has remained in favour of pesticide use. In the USA, insecticides have been estimated to benefit the agricultural products to the tune of around $5 for every $1 spent.Moreover, in many poorer countries, the prospect of imminent mass starvation, or of an epidemic disease, are so frightening that the social and health costs of using pesticides have to be ignored. In general the use of pesticides is justified by objective measures such as 'lives saved', 'economic efficiency of food production' and 'total food produced'. In these very fundamental senses, their use may be described as sustainable. In practice, sustainability depends on continually developing new pesticides that keep at least one step ahead of the pests – pesticides that are less persistent, biodegradable and more accurately targeted at the pests.Q. Why is the use of chemical pesticides generally justified by giving the examples of poor and developing countries?1. Developed countries can afford to do away with use of pesticides by adapting to organic farming, but it is imperative for poor and developing countries to use chemical pesticides.2. In poor and developing countries, the pesticide addresses the problem of epidemic diseases of crops and eases the food problem.3. The social and health costs of pesticide use are generally ignored in poor and developing countries. Which of the statements given above is/are correct?a)1 onlyb)1 and 2 onlyc)2 onlyd)1, 2 and 3Correct answer is option 'C'. Can you explain this answer? tests, examples and also practice UPSC tests.
Explore Courses for UPSC exam

Top Courses for UPSC

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev