GATE Exam  >  GATE Questions  >  Three reservoir P, Q and R are interconnected... Start Learning for Free
Three reservoir P, Q and R are interconnected by pipes as shown in the figure (not drawn to the scale). Piezometric head at the junction S of the pipes is 100 m. Assume acceleration due to gravity as 9.81 m/s2 and density of water as 1000 kg/m3. the length of the pipe from junction S to the inlet of reservoir R is 180 m.

Considering head loss only due to friction (with friction factor of 0.03 for all the pipes), the height of water level in the lowermost reservoir R (in m, round off to one decimal places) with respect to the datum, is ________.
    Correct answer is '97.5'. Can you explain this answer?
    Verified Answer
    Three reservoir P, Q and R are interconnected by pipes as shown in the...

    Apply conutinuity Q3 = Q1 + Q2
    = A1V1 + A2V2

    = 0.3209 m3/s
    Apply energy eq. between (S) and (R)
    Hs = Hr + hf

    z = 97.51 m
    View all questions of this test
    Explore Courses for GATE exam

    Similar GATE Doubts

    Three reservoir P, Q and R are interconnected by pipes as shown in the figure (not drawn to the scale). Piezometric head at the junction S of the pipes is 100 m. Assume acceleration due to gravity as 9.81 m/s2 and density of water as 1000 kg/m3. the length of the pipe from junction S to the inlet of reservoir R is 180 m.Considering head loss only due to friction (with friction factor of 0.03 for all the pipes), the height of water level in the lowermost reservoir R (in m, round off to one decimal places) with respect to the datum, is ________.Correct answer is '97.5'. Can you explain this answer?
    Question Description
    Three reservoir P, Q and R are interconnected by pipes as shown in the figure (not drawn to the scale). Piezometric head at the junction S of the pipes is 100 m. Assume acceleration due to gravity as 9.81 m/s2 and density of water as 1000 kg/m3. the length of the pipe from junction S to the inlet of reservoir R is 180 m.Considering head loss only due to friction (with friction factor of 0.03 for all the pipes), the height of water level in the lowermost reservoir R (in m, round off to one decimal places) with respect to the datum, is ________.Correct answer is '97.5'. Can you explain this answer? for GATE 2024 is part of GATE preparation. The Question and answers have been prepared according to the GATE exam syllabus. Information about Three reservoir P, Q and R are interconnected by pipes as shown in the figure (not drawn to the scale). Piezometric head at the junction S of the pipes is 100 m. Assume acceleration due to gravity as 9.81 m/s2 and density of water as 1000 kg/m3. the length of the pipe from junction S to the inlet of reservoir R is 180 m.Considering head loss only due to friction (with friction factor of 0.03 for all the pipes), the height of water level in the lowermost reservoir R (in m, round off to one decimal places) with respect to the datum, is ________.Correct answer is '97.5'. Can you explain this answer? covers all topics & solutions for GATE 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Three reservoir P, Q and R are interconnected by pipes as shown in the figure (not drawn to the scale). Piezometric head at the junction S of the pipes is 100 m. Assume acceleration due to gravity as 9.81 m/s2 and density of water as 1000 kg/m3. the length of the pipe from junction S to the inlet of reservoir R is 180 m.Considering head loss only due to friction (with friction factor of 0.03 for all the pipes), the height of water level in the lowermost reservoir R (in m, round off to one decimal places) with respect to the datum, is ________.Correct answer is '97.5'. Can you explain this answer?.
    Solutions for Three reservoir P, Q and R are interconnected by pipes as shown in the figure (not drawn to the scale). Piezometric head at the junction S of the pipes is 100 m. Assume acceleration due to gravity as 9.81 m/s2 and density of water as 1000 kg/m3. the length of the pipe from junction S to the inlet of reservoir R is 180 m.Considering head loss only due to friction (with friction factor of 0.03 for all the pipes), the height of water level in the lowermost reservoir R (in m, round off to one decimal places) with respect to the datum, is ________.Correct answer is '97.5'. Can you explain this answer? in English & in Hindi are available as part of our courses for GATE. Download more important topics, notes, lectures and mock test series for GATE Exam by signing up for free.
    Here you can find the meaning of Three reservoir P, Q and R are interconnected by pipes as shown in the figure (not drawn to the scale). Piezometric head at the junction S of the pipes is 100 m. Assume acceleration due to gravity as 9.81 m/s2 and density of water as 1000 kg/m3. the length of the pipe from junction S to the inlet of reservoir R is 180 m.Considering head loss only due to friction (with friction factor of 0.03 for all the pipes), the height of water level in the lowermost reservoir R (in m, round off to one decimal places) with respect to the datum, is ________.Correct answer is '97.5'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of Three reservoir P, Q and R are interconnected by pipes as shown in the figure (not drawn to the scale). Piezometric head at the junction S of the pipes is 100 m. Assume acceleration due to gravity as 9.81 m/s2 and density of water as 1000 kg/m3. the length of the pipe from junction S to the inlet of reservoir R is 180 m.Considering head loss only due to friction (with friction factor of 0.03 for all the pipes), the height of water level in the lowermost reservoir R (in m, round off to one decimal places) with respect to the datum, is ________.Correct answer is '97.5'. Can you explain this answer?, a detailed solution for Three reservoir P, Q and R are interconnected by pipes as shown in the figure (not drawn to the scale). Piezometric head at the junction S of the pipes is 100 m. Assume acceleration due to gravity as 9.81 m/s2 and density of water as 1000 kg/m3. the length of the pipe from junction S to the inlet of reservoir R is 180 m.Considering head loss only due to friction (with friction factor of 0.03 for all the pipes), the height of water level in the lowermost reservoir R (in m, round off to one decimal places) with respect to the datum, is ________.Correct answer is '97.5'. Can you explain this answer? has been provided alongside types of Three reservoir P, Q and R are interconnected by pipes as shown in the figure (not drawn to the scale). Piezometric head at the junction S of the pipes is 100 m. Assume acceleration due to gravity as 9.81 m/s2 and density of water as 1000 kg/m3. the length of the pipe from junction S to the inlet of reservoir R is 180 m.Considering head loss only due to friction (with friction factor of 0.03 for all the pipes), the height of water level in the lowermost reservoir R (in m, round off to one decimal places) with respect to the datum, is ________.Correct answer is '97.5'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice Three reservoir P, Q and R are interconnected by pipes as shown in the figure (not drawn to the scale). Piezometric head at the junction S of the pipes is 100 m. Assume acceleration due to gravity as 9.81 m/s2 and density of water as 1000 kg/m3. the length of the pipe from junction S to the inlet of reservoir R is 180 m.Considering head loss only due to friction (with friction factor of 0.03 for all the pipes), the height of water level in the lowermost reservoir R (in m, round off to one decimal places) with respect to the datum, is ________.Correct answer is '97.5'. Can you explain this answer? tests, examples and also practice GATE tests.
    Explore Courses for GATE exam
    Signup for Free!
    Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
    10M+ students study on EduRev