Question Description
When the rms voltages VL, VC and VR are measured respectively across the inductor L, the capacitor C and the resistor R in a series LCR circuit connected to an AC source, it is found that the ratio VL : VC : VR = 1 : 2 : 3. If the rms voltage of the AC sources is 100 V, the VR is close to:a)50Vb)70Vc)90Vd)100VCorrect answer is option 'C'. Can you explain this answer? for NEET 2024 is part of NEET preparation. The Question and answers have been prepared
according to
the NEET exam syllabus. Information about When the rms voltages VL, VC and VR are measured respectively across the inductor L, the capacitor C and the resistor R in a series LCR circuit connected to an AC source, it is found that the ratio VL : VC : VR = 1 : 2 : 3. If the rms voltage of the AC sources is 100 V, the VR is close to:a)50Vb)70Vc)90Vd)100VCorrect answer is option 'C'. Can you explain this answer? covers all topics & solutions for NEET 2024 Exam.
Find important definitions, questions, meanings, examples, exercises and tests below for When the rms voltages VL, VC and VR are measured respectively across the inductor L, the capacitor C and the resistor R in a series LCR circuit connected to an AC source, it is found that the ratio VL : VC : VR = 1 : 2 : 3. If the rms voltage of the AC sources is 100 V, the VR is close to:a)50Vb)70Vc)90Vd)100VCorrect answer is option 'C'. Can you explain this answer?.
Solutions for When the rms voltages VL, VC and VR are measured respectively across the inductor L, the capacitor C and the resistor R in a series LCR circuit connected to an AC source, it is found that the ratio VL : VC : VR = 1 : 2 : 3. If the rms voltage of the AC sources is 100 V, the VR is close to:a)50Vb)70Vc)90Vd)100VCorrect answer is option 'C'. Can you explain this answer? in English & in Hindi are available as part of our courses for NEET.
Download more important topics, notes, lectures and mock test series for NEET Exam by signing up for free.
Here you can find the meaning of When the rms voltages VL, VC and VR are measured respectively across the inductor L, the capacitor C and the resistor R in a series LCR circuit connected to an AC source, it is found that the ratio VL : VC : VR = 1 : 2 : 3. If the rms voltage of the AC sources is 100 V, the VR is close to:a)50Vb)70Vc)90Vd)100VCorrect answer is option 'C'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of
When the rms voltages VL, VC and VR are measured respectively across the inductor L, the capacitor C and the resistor R in a series LCR circuit connected to an AC source, it is found that the ratio VL : VC : VR = 1 : 2 : 3. If the rms voltage of the AC sources is 100 V, the VR is close to:a)50Vb)70Vc)90Vd)100VCorrect answer is option 'C'. Can you explain this answer?, a detailed solution for When the rms voltages VL, VC and VR are measured respectively across the inductor L, the capacitor C and the resistor R in a series LCR circuit connected to an AC source, it is found that the ratio VL : VC : VR = 1 : 2 : 3. If the rms voltage of the AC sources is 100 V, the VR is close to:a)50Vb)70Vc)90Vd)100VCorrect answer is option 'C'. Can you explain this answer? has been provided alongside types of When the rms voltages VL, VC and VR are measured respectively across the inductor L, the capacitor C and the resistor R in a series LCR circuit connected to an AC source, it is found that the ratio VL : VC : VR = 1 : 2 : 3. If the rms voltage of the AC sources is 100 V, the VR is close to:a)50Vb)70Vc)90Vd)100VCorrect answer is option 'C'. Can you explain this answer? theory, EduRev gives you an
ample number of questions to practice When the rms voltages VL, VC and VR are measured respectively across the inductor L, the capacitor C and the resistor R in a series LCR circuit connected to an AC source, it is found that the ratio VL : VC : VR = 1 : 2 : 3. If the rms voltage of the AC sources is 100 V, the VR is close to:a)50Vb)70Vc)90Vd)100VCorrect answer is option 'C'. Can you explain this answer? tests, examples and also practice NEET tests.