Class 10 Exam  >  Class 10 Questions  >  A system of simultaneous linear equations has... Start Learning for Free
A system of simultaneous linear equations has infinitely many solutions if two lines:
  • a)
    are coincident
  • b)
    intersect at two points
  • c)
    are parallel
  • d)
    intersect at one point
Correct answer is option 'A'. Can you explain this answer?
Most Upvoted Answer
A system of simultaneous linear equations has infinitely many solution...
Explanation:

Simultaneous linear equations are equations with two or more variables that are to be solved at the same time. These equations can be represented by lines, and the solutions represent the points where these lines intersect.

When two lines intersect at one point, there is only one solution to the system of equations. When two lines are parallel, there is no solution to the system of equations. However, when two lines are coincident, they overlap each other and have infinite solutions.

Example:

Consider the system of equations:

2x + 3y = 6
4x + 6y = 12

We can solve this system of equations by using elimination or substitution method.

Using the elimination method, we can multiply the first equation by 2 and subtract the second equation from it to eliminate x, which gives:

4x + 6y = 12
- (4x + 6y = 12)
-----------------
0x + 0y = 0

This equation is always true, which means that the two equations are equivalent. Therefore, they represent the same line, and there are infinitely many solutions to this system of equations.

Using the substitution method, we can solve for y in the first equation and substitute it into the second equation, which gives:

y = (6 - 2x)/3
4x + 6((6 - 2x)/3) = 12

Simplifying the second equation, we get:

4x + 4x = 12

Which gives:

x = 3/2

Substituting this value of x into the first equation, we get:

2(3/2) + 3y = 6

Simplifying, we get:

3y = 3

Which gives:

y = 1

Therefore, the solution to this system of equations is (3/2, 1). However, this is just one solution, and there are infinitely many solutions to this system of equations since the two lines are coincident.
Free Test
Community Answer
A system of simultaneous linear equations has infinitely many solution...
When the two lines are the same line, then the system should have infinite solutions. It means that if the system of equations has an infinite number of solution, then the system is said to be consistent.
Attention Class 10 Students!
To make sure you are not studying endlessly, EduRev has designed Class 10 study material, with Structured Courses, Videos, & Test Series. Plus get personalized analysis, doubt solving and improvement plans to achieve a great score in Class 10.
Explore Courses for Class 10 exam

Top Courses for Class 10

A system of simultaneous linear equations has infinitely many solutions if two lines:a)are coincidentb)intersect at two pointsc)are paralleld)intersect at one pointCorrect answer is option 'A'. Can you explain this answer?
Question Description
A system of simultaneous linear equations has infinitely many solutions if two lines:a)are coincidentb)intersect at two pointsc)are paralleld)intersect at one pointCorrect answer is option 'A'. Can you explain this answer? for Class 10 2024 is part of Class 10 preparation. The Question and answers have been prepared according to the Class 10 exam syllabus. Information about A system of simultaneous linear equations has infinitely many solutions if two lines:a)are coincidentb)intersect at two pointsc)are paralleld)intersect at one pointCorrect answer is option 'A'. Can you explain this answer? covers all topics & solutions for Class 10 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for A system of simultaneous linear equations has infinitely many solutions if two lines:a)are coincidentb)intersect at two pointsc)are paralleld)intersect at one pointCorrect answer is option 'A'. Can you explain this answer?.
Solutions for A system of simultaneous linear equations has infinitely many solutions if two lines:a)are coincidentb)intersect at two pointsc)are paralleld)intersect at one pointCorrect answer is option 'A'. Can you explain this answer? in English & in Hindi are available as part of our courses for Class 10. Download more important topics, notes, lectures and mock test series for Class 10 Exam by signing up for free.
Here you can find the meaning of A system of simultaneous linear equations has infinitely many solutions if two lines:a)are coincidentb)intersect at two pointsc)are paralleld)intersect at one pointCorrect answer is option 'A'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of A system of simultaneous linear equations has infinitely many solutions if two lines:a)are coincidentb)intersect at two pointsc)are paralleld)intersect at one pointCorrect answer is option 'A'. Can you explain this answer?, a detailed solution for A system of simultaneous linear equations has infinitely many solutions if two lines:a)are coincidentb)intersect at two pointsc)are paralleld)intersect at one pointCorrect answer is option 'A'. Can you explain this answer? has been provided alongside types of A system of simultaneous linear equations has infinitely many solutions if two lines:a)are coincidentb)intersect at two pointsc)are paralleld)intersect at one pointCorrect answer is option 'A'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice A system of simultaneous linear equations has infinitely many solutions if two lines:a)are coincidentb)intersect at two pointsc)are paralleld)intersect at one pointCorrect answer is option 'A'. Can you explain this answer? tests, examples and also practice Class 10 tests.
Explore Courses for Class 10 exam

Top Courses for Class 10

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev