Question Description
In a current cumulated chopper, peak commutating current is twice that of the maximum possible load current. The source voltage is 250 V dc and main SCR take off time is 50 μs. Voltage is 250 V dc and main SCR taken off time is 50 μs. If maximum load current is 250 A, then peak capacitor voltage is………V.a)374b)376Correct answer is between '374,376'. Can you explain this answer? for GATE 2024 is part of GATE preparation. The Question and answers have been prepared
according to
the GATE exam syllabus. Information about In a current cumulated chopper, peak commutating current is twice that of the maximum possible load current. The source voltage is 250 V dc and main SCR take off time is 50 μs. Voltage is 250 V dc and main SCR taken off time is 50 μs. If maximum load current is 250 A, then peak capacitor voltage is………V.a)374b)376Correct answer is between '374,376'. Can you explain this answer? covers all topics & solutions for GATE 2024 Exam.
Find important definitions, questions, meanings, examples, exercises and tests below for In a current cumulated chopper, peak commutating current is twice that of the maximum possible load current. The source voltage is 250 V dc and main SCR take off time is 50 μs. Voltage is 250 V dc and main SCR taken off time is 50 μs. If maximum load current is 250 A, then peak capacitor voltage is………V.a)374b)376Correct answer is between '374,376'. Can you explain this answer?.
Solutions for In a current cumulated chopper, peak commutating current is twice that of the maximum possible load current. The source voltage is 250 V dc and main SCR take off time is 50 μs. Voltage is 250 V dc and main SCR taken off time is 50 μs. If maximum load current is 250 A, then peak capacitor voltage is………V.a)374b)376Correct answer is between '374,376'. Can you explain this answer? in English & in Hindi are available as part of our courses for GATE.
Download more important topics, notes, lectures and mock test series for GATE Exam by signing up for free.
Here you can find the meaning of In a current cumulated chopper, peak commutating current is twice that of the maximum possible load current. The source voltage is 250 V dc and main SCR take off time is 50 μs. Voltage is 250 V dc and main SCR taken off time is 50 μs. If maximum load current is 250 A, then peak capacitor voltage is………V.a)374b)376Correct answer is between '374,376'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of
In a current cumulated chopper, peak commutating current is twice that of the maximum possible load current. The source voltage is 250 V dc and main SCR take off time is 50 μs. Voltage is 250 V dc and main SCR taken off time is 50 μs. If maximum load current is 250 A, then peak capacitor voltage is………V.a)374b)376Correct answer is between '374,376'. Can you explain this answer?, a detailed solution for In a current cumulated chopper, peak commutating current is twice that of the maximum possible load current. The source voltage is 250 V dc and main SCR take off time is 50 μs. Voltage is 250 V dc and main SCR taken off time is 50 μs. If maximum load current is 250 A, then peak capacitor voltage is………V.a)374b)376Correct answer is between '374,376'. Can you explain this answer? has been provided alongside types of In a current cumulated chopper, peak commutating current is twice that of the maximum possible load current. The source voltage is 250 V dc and main SCR take off time is 50 μs. Voltage is 250 V dc and main SCR taken off time is 50 μs. If maximum load current is 250 A, then peak capacitor voltage is………V.a)374b)376Correct answer is between '374,376'. Can you explain this answer? theory, EduRev gives you an
ample number of questions to practice In a current cumulated chopper, peak commutating current is twice that of the maximum possible load current. The source voltage is 250 V dc and main SCR take off time is 50 μs. Voltage is 250 V dc and main SCR taken off time is 50 μs. If maximum load current is 250 A, then peak capacitor voltage is………V.a)374b)376Correct answer is between '374,376'. Can you explain this answer? tests, examples and also practice GATE tests.