Question Description
A group (G, *) is called a cyclic group if there exists an element a∈G, such that every element of ‘G’ can be written an for some integer n. Then ‘a’ is called a generating element / generator. Consider the following group G = ( {1, 2, 3, 4, 5, 6},⊗7), , where ⊗7is multiplication modulo 7 operation. Let X be the number of generators of G. And Y be the sum of these generators. Find X + Y is _________________?a)8b)6c)5d)10Correct answer is option 'D'. Can you explain this answer? for GATE 2024 is part of GATE preparation. The Question and answers have been prepared
according to
the GATE exam syllabus. Information about A group (G, *) is called a cyclic group if there exists an element a∈G, such that every element of ‘G’ can be written an for some integer n. Then ‘a’ is called a generating element / generator. Consider the following group G = ( {1, 2, 3, 4, 5, 6},⊗7), , where ⊗7is multiplication modulo 7 operation. Let X be the number of generators of G. And Y be the sum of these generators. Find X + Y is _________________?a)8b)6c)5d)10Correct answer is option 'D'. Can you explain this answer? covers all topics & solutions for GATE 2024 Exam.
Find important definitions, questions, meanings, examples, exercises and tests below for A group (G, *) is called a cyclic group if there exists an element a∈G, such that every element of ‘G’ can be written an for some integer n. Then ‘a’ is called a generating element / generator. Consider the following group G = ( {1, 2, 3, 4, 5, 6},⊗7), , where ⊗7is multiplication modulo 7 operation. Let X be the number of generators of G. And Y be the sum of these generators. Find X + Y is _________________?a)8b)6c)5d)10Correct answer is option 'D'. Can you explain this answer?.
Solutions for A group (G, *) is called a cyclic group if there exists an element a∈G, such that every element of ‘G’ can be written an for some integer n. Then ‘a’ is called a generating element / generator. Consider the following group G = ( {1, 2, 3, 4, 5, 6},⊗7), , where ⊗7is multiplication modulo 7 operation. Let X be the number of generators of G. And Y be the sum of these generators. Find X + Y is _________________?a)8b)6c)5d)10Correct answer is option 'D'. Can you explain this answer? in English & in Hindi are available as part of our courses for GATE.
Download more important topics, notes, lectures and mock test series for GATE Exam by signing up for free.
Here you can find the meaning of A group (G, *) is called a cyclic group if there exists an element a∈G, such that every element of ‘G’ can be written an for some integer n. Then ‘a’ is called a generating element / generator. Consider the following group G = ( {1, 2, 3, 4, 5, 6},⊗7), , where ⊗7is multiplication modulo 7 operation. Let X be the number of generators of G. And Y be the sum of these generators. Find X + Y is _________________?a)8b)6c)5d)10Correct answer is option 'D'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of
A group (G, *) is called a cyclic group if there exists an element a∈G, such that every element of ‘G’ can be written an for some integer n. Then ‘a’ is called a generating element / generator. Consider the following group G = ( {1, 2, 3, 4, 5, 6},⊗7), , where ⊗7is multiplication modulo 7 operation. Let X be the number of generators of G. And Y be the sum of these generators. Find X + Y is _________________?a)8b)6c)5d)10Correct answer is option 'D'. Can you explain this answer?, a detailed solution for A group (G, *) is called a cyclic group if there exists an element a∈G, such that every element of ‘G’ can be written an for some integer n. Then ‘a’ is called a generating element / generator. Consider the following group G = ( {1, 2, 3, 4, 5, 6},⊗7), , where ⊗7is multiplication modulo 7 operation. Let X be the number of generators of G. And Y be the sum of these generators. Find X + Y is _________________?a)8b)6c)5d)10Correct answer is option 'D'. Can you explain this answer? has been provided alongside types of A group (G, *) is called a cyclic group if there exists an element a∈G, such that every element of ‘G’ can be written an for some integer n. Then ‘a’ is called a generating element / generator. Consider the following group G = ( {1, 2, 3, 4, 5, 6},⊗7), , where ⊗7is multiplication modulo 7 operation. Let X be the number of generators of G. And Y be the sum of these generators. Find X + Y is _________________?a)8b)6c)5d)10Correct answer is option 'D'. Can you explain this answer? theory, EduRev gives you an
ample number of questions to practice A group (G, *) is called a cyclic group if there exists an element a∈G, such that every element of ‘G’ can be written an for some integer n. Then ‘a’ is called a generating element / generator. Consider the following group G = ( {1, 2, 3, 4, 5, 6},⊗7), , where ⊗7is multiplication modulo 7 operation. Let X be the number of generators of G. And Y be the sum of these generators. Find X + Y is _________________?a)8b)6c)5d)10Correct answer is option 'D'. Can you explain this answer? tests, examples and also practice GATE tests.