CLAT Exam  >  CLAT Notes  >  Quantitative Techniques for CLAT  >  Square and Cube Roots: Shortcuts & Tricks

Square and Cube Roots: Shortcuts & Tricks | Quantitative Techniques for CLAT PDF Download

Tricks to Find Square Roots

Before learning the trick to solve the square roots and cube roots. One must remember the squares up to 30 and cubes up to 15 (at least).

Squares from 1 to 30

Square and Cube Roots: Shortcuts & Tricks | Quantitative Techniques for CLAT

Trick to find Perfect Square Roots

Learn above squares before applying this trick.
Now lets observe the pattern of the squares from 1 to 9. 

Square and Cube Roots: Shortcuts & Tricks | Quantitative Techniques for CLAT

Keeping in mind the above pattern, now see how we can find the square of numbers.

Example: _/2304 = ?
Sol: First see the last two digits of the number of which we have to find the square root.
Here the last two digits of the number are 04. So we can see from the above table that square root will end with either 2 or 8.
Cross the last two digits after this step.

Square and Cube Roots: Shortcuts & Tricks | Quantitative Techniques for CLAT

Now check the remaining number. Here the remaining number is 23. Take the perfect square less than this number i.e. before 23. We all know that 16 is the perfect square less than 23 and 16 is the square of 4. So 4 will be the first number of square root of 2304.
Square and Cube Roots: Shortcuts & Tricks | Quantitative Techniques for CLAT

Now the question arises whether 42 will be the square root or 48.
There are two ways to identify this:

1st Way
Take the range in which the options are coming
Here the range is 40-50
402 = 1600
502 = 2500
2304 is near to 2500,
So 48 will be the answer.

2nd Way
Take the square of the number (common value) which ends with 5 ( as it is easy to find squares of number ending wit 5 ) and lies between 42 and 48 i.e. take square of 45.
452 =  2025
2304 > 2025
So, number more than 45 will be the answer, So 48 will be the answer.
Ans: = 48

Trick to find Imperfect Square

Generally Approximation questions contains imperfect squares in their questions. So lets discuss the tricks to solve the imperfect squares.

Example:  _/ 9000
Consider the range in which the given number lies. Then take the difference from the lowest number of the range. Divide the resultant number with the number of lowest range multiplied by 2.Add both results and that will be the answer.

Square and Cube Roots: Shortcuts & Tricks | Quantitative Techniques for CLAT

Range in which the given number lies.
Difference of number and lowest range,
90 will be surely part of answer as square of 90 is 8100 which is less than 9000. Now take the difference as numerator and divide it by the other part i.e. 90*2 (Always multiply the denominator by 2)

Tricks to Find Cube Roots

Cubes from 1 to 15

Square and Cube Roots: Shortcuts & Tricks | Quantitative Techniques for CLAT

Learn above cubes before applying this trick.
Now, observe the pattern of the cubes from 1 to 9.
Square and Cube Roots: Shortcuts & Tricks | Quantitative Techniques for CLAT

Trick to Find Perfect Cube Roots 

Example:  3/17576
First see the last three digits of the number of which we have to find the cube root.
Here the last three digits of the number are 576. So we can see from the above table that cube root will end with 6.

Square and Cube Roots: Shortcuts & Tricks | Quantitative Techniques for CLAT

Cross the last digits of the number after this step.
Now check the remaining number i.e. 17. Perfect cube before 17 is 8 and 8 is cube of 2. So 2 will be the first digit of cube root.
Square and Cube Roots: Shortcuts & Tricks | Quantitative Techniques for CLAT

Ans:  26

Tricks to Find Imperfect Cubes

Generally Approximation questions contains imperfect cubes in their questions. So lets discuss the tricks to solve the imperfect cubes.

Example : _3/80000
Consider the range in which the given number lies. Then take the difference of the lowest number of the range and given number.
The range in which 8000 lies is 403 - 503

Square and Cube Roots: Shortcuts & Tricks | Quantitative Techniques for CLATAlways multiply the result with 10
= 40 + 2.5
= 42.5 ( approx)

The document Square and Cube Roots: Shortcuts & Tricks | Quantitative Techniques for CLAT is a part of the CLAT Course Quantitative Techniques for CLAT.
All you need of CLAT at this link: CLAT
57 videos|108 docs|73 tests

Top Courses for CLAT

FAQs on Square and Cube Roots: Shortcuts & Tricks - Quantitative Techniques for CLAT

1. How can I find the square root of a perfect square?
Ans. To find the square root of a perfect square, you can simply take the square root of the given number. For example, the square root of 25 is 5 because 5 * 5 = 25.
2. How can I find the square root of an imperfect square?
Ans. To find the square root of an imperfect square, you can use the long division method or a calculator. Long division involves finding the nearest perfect square less than the given number and then finding the difference between them. You can repeat this process until you get a desired level of accuracy.
3. What is a trick to find cube roots?
Ans. One trick to find cube roots is to memorize the cube of numbers from 1 to 10. This will help you quickly identify the cube root of a given number within this range. For example, if the given number is 27, you can quickly recognize that its cube root is 3 because 3 * 3 * 3 = 27.
4. How can I find the perfect cube root of a number?
Ans. To find the perfect cube root of a number, you can use the reverse process of finding the cube of a number. For example, if you want to find the cube root of 64, you can start by trying different numbers and cube them until you find the one that equals 64. In this case, the cube root of 64 is 4 because 4 * 4 * 4 = 64.
5. How can I find the cube root of an imperfect cube?
Ans. To find the cube root of an imperfect cube, you can use estimation techniques or a calculator. Estimation involves finding the nearest perfect cube less than the given number and then finding the difference between them. You can repeat this process until you get a desired level of accuracy. Alternatively, you can use a calculator that has a cube root function to get an exact value.
57 videos|108 docs|73 tests
Download as PDF
Explore Courses for CLAT exam

Top Courses for CLAT

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Extra Questions

,

practice quizzes

,

Objective type Questions

,

study material

,

MCQs

,

Exam

,

ppt

,

Summary

,

Square and Cube Roots: Shortcuts & Tricks | Quantitative Techniques for CLAT

,

Previous Year Questions with Solutions

,

shortcuts and tricks

,

Important questions

,

Sample Paper

,

Square and Cube Roots: Shortcuts & Tricks | Quantitative Techniques for CLAT

,

Semester Notes

,

Square and Cube Roots: Shortcuts & Tricks | Quantitative Techniques for CLAT

,

Viva Questions

,

video lectures

,

Free

,

past year papers

,

pdf

,

mock tests for examination

;