Quant Exam  >  Quant Questions  >  For what value of b and c would the equation ... Start Learning for Free
For what value of b and c would the equation x2 + bx + c = 0 have roots equal to b and c.
  • a)
    (0,0)
  • b)
    (1,-2)
  • c)
    (1,2)
  • d)
    Both (a) and (b)
Correct answer is option 'D'. Can you explain this answer?
Verified Answer
For what value of b and c would the equation x2 + bx + c = 0 have root...
Solve using options. It can be seen that at b = 0 and c = 0 the condition is satisfied. It is also satisfied at b = 1 and c = - 2 .
View all questions of this test
Most Upvoted Answer
For what value of b and c would the equation x2 + bx + c = 0 have root...
To find the values of b and c that would make the equation x^2 + bx + c = 0 have roots equal to b and c, we can use the fact that the sum and product of the roots of a quadratic equation are related to its coefficients.

The sum of the roots of a quadratic equation ax^2 + bx + c = 0 is given by -b/a, and the product of the roots is given by c/a.

In this case, we are given that the roots are b and c. So we have the following equations:

b + c = -b/a
bc = c/a

We can simplify the second equation by multiplying both sides by a:

abc = c

Now we have two equations:

b + c = -b/a
abc = c

We can solve these equations to find the values of b and c.

Solving the equations:
To solve the first equation, we can multiply both sides by a:

ab + ac = -b

Rearranging the equation, we get:

ab + b = -ac

Factoring out b, we have:

b(a + 1) = -ac

Dividing both sides by (a + 1), we get:

b = -ac/(a + 1)

Substituting this value of b into the second equation, we have:

abc = c

Replacing b with -ac/(a + 1), we get:

-a^2c/(a + 1) = c

Cross-multiplying, we have:

-a^2c = c(a + 1)

Simplifying, we get:

-a^2c = ac + c

Adding ac to both sides, we have:

ac - a^2c = c

Factoring out c, we get:

c(a - a^2) = c

Dividing both sides by c, we get:

a - a^2 = 1

This is a quadratic equation in terms of a. We can solve it by rearranging and factoring:

a^2 - a + 1 = 0

This equation does not have any real solutions. Therefore, there are no values of b and c that would make the equation x^2 + bx + c = 0 have roots equal to b and c.

Thus, the correct answer is option D) Both (a) and (b).
Explore Courses for Quant exam
For what value of b and c would the equation x2 + bx + c = 0 have roots equal to b and c.a)(0,0)b)(1,-2)c)(1,2)d)Both (a) and (b)Correct answer is option 'D'. Can you explain this answer?
Question Description
For what value of b and c would the equation x2 + bx + c = 0 have roots equal to b and c.a)(0,0)b)(1,-2)c)(1,2)d)Both (a) and (b)Correct answer is option 'D'. Can you explain this answer? for Quant 2024 is part of Quant preparation. The Question and answers have been prepared according to the Quant exam syllabus. Information about For what value of b and c would the equation x2 + bx + c = 0 have roots equal to b and c.a)(0,0)b)(1,-2)c)(1,2)d)Both (a) and (b)Correct answer is option 'D'. Can you explain this answer? covers all topics & solutions for Quant 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for For what value of b and c would the equation x2 + bx + c = 0 have roots equal to b and c.a)(0,0)b)(1,-2)c)(1,2)d)Both (a) and (b)Correct answer is option 'D'. Can you explain this answer?.
Solutions for For what value of b and c would the equation x2 + bx + c = 0 have roots equal to b and c.a)(0,0)b)(1,-2)c)(1,2)d)Both (a) and (b)Correct answer is option 'D'. Can you explain this answer? in English & in Hindi are available as part of our courses for Quant. Download more important topics, notes, lectures and mock test series for Quant Exam by signing up for free.
Here you can find the meaning of For what value of b and c would the equation x2 + bx + c = 0 have roots equal to b and c.a)(0,0)b)(1,-2)c)(1,2)d)Both (a) and (b)Correct answer is option 'D'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of For what value of b and c would the equation x2 + bx + c = 0 have roots equal to b and c.a)(0,0)b)(1,-2)c)(1,2)d)Both (a) and (b)Correct answer is option 'D'. Can you explain this answer?, a detailed solution for For what value of b and c would the equation x2 + bx + c = 0 have roots equal to b and c.a)(0,0)b)(1,-2)c)(1,2)d)Both (a) and (b)Correct answer is option 'D'. Can you explain this answer? has been provided alongside types of For what value of b and c would the equation x2 + bx + c = 0 have roots equal to b and c.a)(0,0)b)(1,-2)c)(1,2)d)Both (a) and (b)Correct answer is option 'D'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice For what value of b and c would the equation x2 + bx + c = 0 have roots equal to b and c.a)(0,0)b)(1,-2)c)(1,2)d)Both (a) and (b)Correct answer is option 'D'. Can you explain this answer? tests, examples and also practice Quant tests.
Explore Courses for Quant exam
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev