Question Description
The small-signal resistance ( i.e dVB/dID)in k? offered by the n-channelMOSFET M shown in the figure below, at a bias point of VB = 2 V is (device data for M: device Transconductance parameter kN = μ Cox(W / L0 = 40μA / V2threshold voltage VTN = 1V, and neglect body effect and channel lengthmodulation effects)a)12.5b)25c)50d)100Correct answer is option 'B'. Can you explain this answer? for GATE 2024 is part of GATE preparation. The Question and answers have been prepared
according to
the GATE exam syllabus. Information about The small-signal resistance ( i.e dVB/dID)in k? offered by the n-channelMOSFET M shown in the figure below, at a bias point of VB = 2 V is (device data for M: device Transconductance parameter kN = μ Cox(W / L0 = 40μA / V2threshold voltage VTN = 1V, and neglect body effect and channel lengthmodulation effects)a)12.5b)25c)50d)100Correct answer is option 'B'. Can you explain this answer? covers all topics & solutions for GATE 2024 Exam.
Find important definitions, questions, meanings, examples, exercises and tests below for The small-signal resistance ( i.e dVB/dID)in k? offered by the n-channelMOSFET M shown in the figure below, at a bias point of VB = 2 V is (device data for M: device Transconductance parameter kN = μ Cox(W / L0 = 40μA / V2threshold voltage VTN = 1V, and neglect body effect and channel lengthmodulation effects)a)12.5b)25c)50d)100Correct answer is option 'B'. Can you explain this answer?.
Solutions for The small-signal resistance ( i.e dVB/dID)in k? offered by the n-channelMOSFET M shown in the figure below, at a bias point of VB = 2 V is (device data for M: device Transconductance parameter kN = μ Cox(W / L0 = 40μA / V2threshold voltage VTN = 1V, and neglect body effect and channel lengthmodulation effects)a)12.5b)25c)50d)100Correct answer is option 'B'. Can you explain this answer? in English & in Hindi are available as part of our courses for GATE.
Download more important topics, notes, lectures and mock test series for GATE Exam by signing up for free.
Here you can find the meaning of The small-signal resistance ( i.e dVB/dID)in k? offered by the n-channelMOSFET M shown in the figure below, at a bias point of VB = 2 V is (device data for M: device Transconductance parameter kN = μ Cox(W / L0 = 40μA / V2threshold voltage VTN = 1V, and neglect body effect and channel lengthmodulation effects)a)12.5b)25c)50d)100Correct answer is option 'B'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of
The small-signal resistance ( i.e dVB/dID)in k? offered by the n-channelMOSFET M shown in the figure below, at a bias point of VB = 2 V is (device data for M: device Transconductance parameter kN = μ Cox(W / L0 = 40μA / V2threshold voltage VTN = 1V, and neglect body effect and channel lengthmodulation effects)a)12.5b)25c)50d)100Correct answer is option 'B'. Can you explain this answer?, a detailed solution for The small-signal resistance ( i.e dVB/dID)in k? offered by the n-channelMOSFET M shown in the figure below, at a bias point of VB = 2 V is (device data for M: device Transconductance parameter kN = μ Cox(W / L0 = 40μA / V2threshold voltage VTN = 1V, and neglect body effect and channel lengthmodulation effects)a)12.5b)25c)50d)100Correct answer is option 'B'. Can you explain this answer? has been provided alongside types of The small-signal resistance ( i.e dVB/dID)in k? offered by the n-channelMOSFET M shown in the figure below, at a bias point of VB = 2 V is (device data for M: device Transconductance parameter kN = μ Cox(W / L0 = 40μA / V2threshold voltage VTN = 1V, and neglect body effect and channel lengthmodulation effects)a)12.5b)25c)50d)100Correct answer is option 'B'. Can you explain this answer? theory, EduRev gives you an
ample number of questions to practice The small-signal resistance ( i.e dVB/dID)in k? offered by the n-channelMOSFET M shown in the figure below, at a bias point of VB = 2 V is (device data for M: device Transconductance parameter kN = μ Cox(W / L0 = 40μA / V2threshold voltage VTN = 1V, and neglect body effect and channel lengthmodulation effects)a)12.5b)25c)50d)100Correct answer is option 'B'. Can you explain this answer? tests, examples and also practice GATE tests.