Question Description
A small metal bead (radius 0.5 mm), initially at 100°C, when placed in a stream of fluid at 20°C, attains a temperature of 28°C in 4.35 seconds. The density and specific heat of the metal are 8500 kg/m3 and 400 J/kgK, respectively. If the bead is considered as lumped system, the convective heat transfer coefficient (in W/m2K) between the metal bead and the fluid stream isa)149.9b)449.7c)283.3d)299.8Correct answer is option 'D'. Can you explain this answer? for GATE 2024 is part of GATE preparation. The Question and answers have been prepared
according to
the GATE exam syllabus. Information about A small metal bead (radius 0.5 mm), initially at 100°C, when placed in a stream of fluid at 20°C, attains a temperature of 28°C in 4.35 seconds. The density and specific heat of the metal are 8500 kg/m3 and 400 J/kgK, respectively. If the bead is considered as lumped system, the convective heat transfer coefficient (in W/m2K) between the metal bead and the fluid stream isa)149.9b)449.7c)283.3d)299.8Correct answer is option 'D'. Can you explain this answer? covers all topics & solutions for GATE 2024 Exam.
Find important definitions, questions, meanings, examples, exercises and tests below for A small metal bead (radius 0.5 mm), initially at 100°C, when placed in a stream of fluid at 20°C, attains a temperature of 28°C in 4.35 seconds. The density and specific heat of the metal are 8500 kg/m3 and 400 J/kgK, respectively. If the bead is considered as lumped system, the convective heat transfer coefficient (in W/m2K) between the metal bead and the fluid stream isa)149.9b)449.7c)283.3d)299.8Correct answer is option 'D'. Can you explain this answer?.
Solutions for A small metal bead (radius 0.5 mm), initially at 100°C, when placed in a stream of fluid at 20°C, attains a temperature of 28°C in 4.35 seconds. The density and specific heat of the metal are 8500 kg/m3 and 400 J/kgK, respectively. If the bead is considered as lumped system, the convective heat transfer coefficient (in W/m2K) between the metal bead and the fluid stream isa)149.9b)449.7c)283.3d)299.8Correct answer is option 'D'. Can you explain this answer? in English & in Hindi are available as part of our courses for GATE.
Download more important topics, notes, lectures and mock test series for GATE Exam by signing up for free.
Here you can find the meaning of A small metal bead (radius 0.5 mm), initially at 100°C, when placed in a stream of fluid at 20°C, attains a temperature of 28°C in 4.35 seconds. The density and specific heat of the metal are 8500 kg/m3 and 400 J/kgK, respectively. If the bead is considered as lumped system, the convective heat transfer coefficient (in W/m2K) between the metal bead and the fluid stream isa)149.9b)449.7c)283.3d)299.8Correct answer is option 'D'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of
A small metal bead (radius 0.5 mm), initially at 100°C, when placed in a stream of fluid at 20°C, attains a temperature of 28°C in 4.35 seconds. The density and specific heat of the metal are 8500 kg/m3 and 400 J/kgK, respectively. If the bead is considered as lumped system, the convective heat transfer coefficient (in W/m2K) between the metal bead and the fluid stream isa)149.9b)449.7c)283.3d)299.8Correct answer is option 'D'. Can you explain this answer?, a detailed solution for A small metal bead (radius 0.5 mm), initially at 100°C, when placed in a stream of fluid at 20°C, attains a temperature of 28°C in 4.35 seconds. The density and specific heat of the metal are 8500 kg/m3 and 400 J/kgK, respectively. If the bead is considered as lumped system, the convective heat transfer coefficient (in W/m2K) between the metal bead and the fluid stream isa)149.9b)449.7c)283.3d)299.8Correct answer is option 'D'. Can you explain this answer? has been provided alongside types of A small metal bead (radius 0.5 mm), initially at 100°C, when placed in a stream of fluid at 20°C, attains a temperature of 28°C in 4.35 seconds. The density and specific heat of the metal are 8500 kg/m3 and 400 J/kgK, respectively. If the bead is considered as lumped system, the convective heat transfer coefficient (in W/m2K) between the metal bead and the fluid stream isa)149.9b)449.7c)283.3d)299.8Correct answer is option 'D'. Can you explain this answer? theory, EduRev gives you an
ample number of questions to practice A small metal bead (radius 0.5 mm), initially at 100°C, when placed in a stream of fluid at 20°C, attains a temperature of 28°C in 4.35 seconds. The density and specific heat of the metal are 8500 kg/m3 and 400 J/kgK, respectively. If the bead is considered as lumped system, the convective heat transfer coefficient (in W/m2K) between the metal bead and the fluid stream isa)149.9b)449.7c)283.3d)299.8Correct answer is option 'D'. Can you explain this answer? tests, examples and also practice GATE tests.