Question Description
Air (ideal gas) enters a perfectly insulated compressor at a temperature of 310 K. The pressure ratio of the compressor is 6. Specific heat at constant pressure for air is 1005 J/kg.K and ratio of specific heats at constant pressure and constant volume is 1.4. Assume that specific heats of air are constant. If the isentropic efficiency of the compressor is 85 percent, the difference in enthalpies of air between the exit and the inlet of the compressor is ________ kJ/kg (round off to nearest integer).Correct answer is '245'. Can you explain this answer? for GATE 2024 is part of GATE preparation. The Question and answers have been prepared
according to
the GATE exam syllabus. Information about Air (ideal gas) enters a perfectly insulated compressor at a temperature of 310 K. The pressure ratio of the compressor is 6. Specific heat at constant pressure for air is 1005 J/kg.K and ratio of specific heats at constant pressure and constant volume is 1.4. Assume that specific heats of air are constant. If the isentropic efficiency of the compressor is 85 percent, the difference in enthalpies of air between the exit and the inlet of the compressor is ________ kJ/kg (round off to nearest integer).Correct answer is '245'. Can you explain this answer? covers all topics & solutions for GATE 2024 Exam.
Find important definitions, questions, meanings, examples, exercises and tests below for Air (ideal gas) enters a perfectly insulated compressor at a temperature of 310 K. The pressure ratio of the compressor is 6. Specific heat at constant pressure for air is 1005 J/kg.K and ratio of specific heats at constant pressure and constant volume is 1.4. Assume that specific heats of air are constant. If the isentropic efficiency of the compressor is 85 percent, the difference in enthalpies of air between the exit and the inlet of the compressor is ________ kJ/kg (round off to nearest integer).Correct answer is '245'. Can you explain this answer?.
Solutions for Air (ideal gas) enters a perfectly insulated compressor at a temperature of 310 K. The pressure ratio of the compressor is 6. Specific heat at constant pressure for air is 1005 J/kg.K and ratio of specific heats at constant pressure and constant volume is 1.4. Assume that specific heats of air are constant. If the isentropic efficiency of the compressor is 85 percent, the difference in enthalpies of air between the exit and the inlet of the compressor is ________ kJ/kg (round off to nearest integer).Correct answer is '245'. Can you explain this answer? in English & in Hindi are available as part of our courses for GATE.
Download more important topics, notes, lectures and mock test series for GATE Exam by signing up for free.
Here you can find the meaning of Air (ideal gas) enters a perfectly insulated compressor at a temperature of 310 K. The pressure ratio of the compressor is 6. Specific heat at constant pressure for air is 1005 J/kg.K and ratio of specific heats at constant pressure and constant volume is 1.4. Assume that specific heats of air are constant. If the isentropic efficiency of the compressor is 85 percent, the difference in enthalpies of air between the exit and the inlet of the compressor is ________ kJ/kg (round off to nearest integer).Correct answer is '245'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of
Air (ideal gas) enters a perfectly insulated compressor at a temperature of 310 K. The pressure ratio of the compressor is 6. Specific heat at constant pressure for air is 1005 J/kg.K and ratio of specific heats at constant pressure and constant volume is 1.4. Assume that specific heats of air are constant. If the isentropic efficiency of the compressor is 85 percent, the difference in enthalpies of air between the exit and the inlet of the compressor is ________ kJ/kg (round off to nearest integer).Correct answer is '245'. Can you explain this answer?, a detailed solution for Air (ideal gas) enters a perfectly insulated compressor at a temperature of 310 K. The pressure ratio of the compressor is 6. Specific heat at constant pressure for air is 1005 J/kg.K and ratio of specific heats at constant pressure and constant volume is 1.4. Assume that specific heats of air are constant. If the isentropic efficiency of the compressor is 85 percent, the difference in enthalpies of air between the exit and the inlet of the compressor is ________ kJ/kg (round off to nearest integer).Correct answer is '245'. Can you explain this answer? has been provided alongside types of Air (ideal gas) enters a perfectly insulated compressor at a temperature of 310 K. The pressure ratio of the compressor is 6. Specific heat at constant pressure for air is 1005 J/kg.K and ratio of specific heats at constant pressure and constant volume is 1.4. Assume that specific heats of air are constant. If the isentropic efficiency of the compressor is 85 percent, the difference in enthalpies of air between the exit and the inlet of the compressor is ________ kJ/kg (round off to nearest integer).Correct answer is '245'. Can you explain this answer? theory, EduRev gives you an
ample number of questions to practice Air (ideal gas) enters a perfectly insulated compressor at a temperature of 310 K. The pressure ratio of the compressor is 6. Specific heat at constant pressure for air is 1005 J/kg.K and ratio of specific heats at constant pressure and constant volume is 1.4. Assume that specific heats of air are constant. If the isentropic efficiency of the compressor is 85 percent, the difference in enthalpies of air between the exit and the inlet of the compressor is ________ kJ/kg (round off to nearest integer).Correct answer is '245'. Can you explain this answer? tests, examples and also practice GATE tests.