Question Description
A water supply scheme transports 10 MLD (Million Litres per Day) water through a 450 mm diameter pipeline for a distance of 2.5 km. A chlorine dose of 3.50 mg/litre is applied at the starting point of the pipeline to attain a certain level of disinfection at the downward end. It is decided to increase the flow rate from 10 MLD to 13 MLD in the pipeline. Assume exponent for concentration, n = 0.86. With this increased flow, in order to attain the same level of disinfection, the chlorine does (in mg/litre) to be applied at the starting point should bea)5.55b)4.75c)3.95d)4.40Correct answer is option 'B'. Can you explain this answer? for GATE 2024 is part of GATE preparation. The Question and answers have been prepared
according to
the GATE exam syllabus. Information about A water supply scheme transports 10 MLD (Million Litres per Day) water through a 450 mm diameter pipeline for a distance of 2.5 km. A chlorine dose of 3.50 mg/litre is applied at the starting point of the pipeline to attain a certain level of disinfection at the downward end. It is decided to increase the flow rate from 10 MLD to 13 MLD in the pipeline. Assume exponent for concentration, n = 0.86. With this increased flow, in order to attain the same level of disinfection, the chlorine does (in mg/litre) to be applied at the starting point should bea)5.55b)4.75c)3.95d)4.40Correct answer is option 'B'. Can you explain this answer? covers all topics & solutions for GATE 2024 Exam.
Find important definitions, questions, meanings, examples, exercises and tests below for A water supply scheme transports 10 MLD (Million Litres per Day) water through a 450 mm diameter pipeline for a distance of 2.5 km. A chlorine dose of 3.50 mg/litre is applied at the starting point of the pipeline to attain a certain level of disinfection at the downward end. It is decided to increase the flow rate from 10 MLD to 13 MLD in the pipeline. Assume exponent for concentration, n = 0.86. With this increased flow, in order to attain the same level of disinfection, the chlorine does (in mg/litre) to be applied at the starting point should bea)5.55b)4.75c)3.95d)4.40Correct answer is option 'B'. Can you explain this answer?.
Solutions for A water supply scheme transports 10 MLD (Million Litres per Day) water through a 450 mm diameter pipeline for a distance of 2.5 km. A chlorine dose of 3.50 mg/litre is applied at the starting point of the pipeline to attain a certain level of disinfection at the downward end. It is decided to increase the flow rate from 10 MLD to 13 MLD in the pipeline. Assume exponent for concentration, n = 0.86. With this increased flow, in order to attain the same level of disinfection, the chlorine does (in mg/litre) to be applied at the starting point should bea)5.55b)4.75c)3.95d)4.40Correct answer is option 'B'. Can you explain this answer? in English & in Hindi are available as part of our courses for GATE.
Download more important topics, notes, lectures and mock test series for GATE Exam by signing up for free.
Here you can find the meaning of A water supply scheme transports 10 MLD (Million Litres per Day) water through a 450 mm diameter pipeline for a distance of 2.5 km. A chlorine dose of 3.50 mg/litre is applied at the starting point of the pipeline to attain a certain level of disinfection at the downward end. It is decided to increase the flow rate from 10 MLD to 13 MLD in the pipeline. Assume exponent for concentration, n = 0.86. With this increased flow, in order to attain the same level of disinfection, the chlorine does (in mg/litre) to be applied at the starting point should bea)5.55b)4.75c)3.95d)4.40Correct answer is option 'B'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of
A water supply scheme transports 10 MLD (Million Litres per Day) water through a 450 mm diameter pipeline for a distance of 2.5 km. A chlorine dose of 3.50 mg/litre is applied at the starting point of the pipeline to attain a certain level of disinfection at the downward end. It is decided to increase the flow rate from 10 MLD to 13 MLD in the pipeline. Assume exponent for concentration, n = 0.86. With this increased flow, in order to attain the same level of disinfection, the chlorine does (in mg/litre) to be applied at the starting point should bea)5.55b)4.75c)3.95d)4.40Correct answer is option 'B'. Can you explain this answer?, a detailed solution for A water supply scheme transports 10 MLD (Million Litres per Day) water through a 450 mm diameter pipeline for a distance of 2.5 km. A chlorine dose of 3.50 mg/litre is applied at the starting point of the pipeline to attain a certain level of disinfection at the downward end. It is decided to increase the flow rate from 10 MLD to 13 MLD in the pipeline. Assume exponent for concentration, n = 0.86. With this increased flow, in order to attain the same level of disinfection, the chlorine does (in mg/litre) to be applied at the starting point should bea)5.55b)4.75c)3.95d)4.40Correct answer is option 'B'. Can you explain this answer? has been provided alongside types of A water supply scheme transports 10 MLD (Million Litres per Day) water through a 450 mm diameter pipeline for a distance of 2.5 km. A chlorine dose of 3.50 mg/litre is applied at the starting point of the pipeline to attain a certain level of disinfection at the downward end. It is decided to increase the flow rate from 10 MLD to 13 MLD in the pipeline. Assume exponent for concentration, n = 0.86. With this increased flow, in order to attain the same level of disinfection, the chlorine does (in mg/litre) to be applied at the starting point should bea)5.55b)4.75c)3.95d)4.40Correct answer is option 'B'. Can you explain this answer? theory, EduRev gives you an
ample number of questions to practice A water supply scheme transports 10 MLD (Million Litres per Day) water through a 450 mm diameter pipeline for a distance of 2.5 km. A chlorine dose of 3.50 mg/litre is applied at the starting point of the pipeline to attain a certain level of disinfection at the downward end. It is decided to increase the flow rate from 10 MLD to 13 MLD in the pipeline. Assume exponent for concentration, n = 0.86. With this increased flow, in order to attain the same level of disinfection, the chlorine does (in mg/litre) to be applied at the starting point should bea)5.55b)4.75c)3.95d)4.40Correct answer is option 'B'. Can you explain this answer? tests, examples and also practice GATE tests.