If cos A + cos2 A = 1 and a sin12 A + b sin10 A + c sin8 A + d sin6 A ...
Given,
Cos A = 1 - Cos2A
=> Cos A = Sin2 A
=> Cos2A = Sin4A
=> 1 – Sin2 A = Sin4 A
=> 1 = Sin4 A + Sin2 A
=> 13 = (Sin4A + Sin2A)3
=> 1 = Sin12 A + Sin6A + 3Sin8 A + 3Sin10 A
=> Sin12 A + Sin6A + 3Sin8 A + 3Sin10 A – 1 = 0
On comparing,
a = 1, b = 3 , c = 3 , d = 1
∴ b/c + d = 3
Always look out for Pythagorean triplets, we know that (8,15,17) is one
∴ 17 (18/7CosA+15/17SinA)
The question is "Find the value of a+b/c+d"
Hence, the answer is 3
This question is part of UPSC exam. View all Quant courses
If cos A + cos2 A = 1 and a sin12 A + b sin10 A + c sin8 A + d sin6 A ...
Given: cos A * cos2 A = 1
To find: a sin12 A * b sin10 A * c sin8 A * d sin6 A - 1 = 0
Solution:
Let's simplify the given equation step by step.
Step 1: Using the identity cos2 A = 1 - sin2 A, we can rewrite the given equation as:
cos A * (1 - sin2 A) = 1
Step 2: Distributing cos A, we get:
cos A - cos A * sin2 A = 1
Step 3: Rearranging the terms, we have:
cos A = 1 + cos A * sin2 A
Step 4: Dividing both sides by cos A, we get:
1 = sec A + sin2 A
Step 5: Using the identity sec A = 1/cos A, we can rewrite the equation as:
1 = 1/cos A + sin2 A
Step 6: Multiplying both sides by cos A, we get:
cos A = 1 + cos A * sin2 A
Step 7: Rearranging the terms, we have:
cos A = 1 + cos A * sin2 A
Now, let's solve the given expression a sin12 A * b sin10 A * c sin8 A * d sin6 A - 1 = 0.
Step 1: Substitute sin2 A = 1 - cos2 A in the expression:
a sin12 A * b sin10 A * c sin8 A * d sin6 A - 1 = 0
a sin12 A * b sin10 A * c sin8 A * d sin6 A - 1 = a sin12 A * b sin10 A * c sin8 A * d (1 - cos2 A) - 1 = 0
Step 2: Substitute cos A = 1 + cos A * sin2 A from the previous equation:
a sin12 A * b sin10 A * c sin8 A * d (1 - cos2 A) - 1 = a sin12 A * b sin10 A * c sin8 A * d (1 - (1 + cos A * sin2 A)) - 1 = 0
Step 3: Simplifying further:
a sin12 A * b sin10 A * c sin8 A * d (1 - 1 - cos A * sin2 A) - 1 = 0
a sin12 A * b sin10 A * c sin8 A * d (-cos A * sin2 A) - 1 = 0
Step 4: Using the identity sin2 A = 1 - cos2 A, we can rewrite the equation as:
a sin12 A * b sin10 A * c sin8 A * d (-cos A * (1 - cos2 A)) - 1 = 0
a sin12 A * b sin10 A * c sin8 A * d (-cos A + cos3 A) - 1 = 0
Step 5: Simplifying further:
-a b c d cos A + a b c d cos3 A - 1 = 0
Step 6: Rearranging the terms, we have:
a b c d cos3 A - a b c d cos A - 1 =