Question Description
A calibrated orifice meter is used in a pipeline of 103 mm ID to calibrate the probe of a constant temperature hotwire anemometer (CTA). The orifice meter readings are recorded in mm of Hg and the CTA readings in volts. It is independently found that the average velocity in the pipeline is exactly equal to the velocity at its axis, the volume flow rate of the fluid (Q) can be measured from the orifice meter calibration equation: Q = 6.311 x 10-4√h where h is in mm of Hg and Q is in m3/s. The readings of the CTA are correlated in the form : (volt)2 = a + b (velocity)1/2. Determine the constants (a) and (b) in this equation if the voltage readings are 0.284 and 0.323 V respectively when the corresponding orifice meter readings are 77 and 154 mm Hg. (5) (2002)Correct answer is '0.09, 0.252'. Can you explain this answer? for GATE 2024 is part of GATE preparation. The Question and answers have been prepared
according to
the GATE exam syllabus. Information about A calibrated orifice meter is used in a pipeline of 103 mm ID to calibrate the probe of a constant temperature hotwire anemometer (CTA). The orifice meter readings are recorded in mm of Hg and the CTA readings in volts. It is independently found that the average velocity in the pipeline is exactly equal to the velocity at its axis, the volume flow rate of the fluid (Q) can be measured from the orifice meter calibration equation: Q = 6.311 x 10-4√h where h is in mm of Hg and Q is in m3/s. The readings of the CTA are correlated in the form : (volt)2 = a + b (velocity)1/2. Determine the constants (a) and (b) in this equation if the voltage readings are 0.284 and 0.323 V respectively when the corresponding orifice meter readings are 77 and 154 mm Hg. (5) (2002)Correct answer is '0.09, 0.252'. Can you explain this answer? covers all topics & solutions for GATE 2024 Exam.
Find important definitions, questions, meanings, examples, exercises and tests below for A calibrated orifice meter is used in a pipeline of 103 mm ID to calibrate the probe of a constant temperature hotwire anemometer (CTA). The orifice meter readings are recorded in mm of Hg and the CTA readings in volts. It is independently found that the average velocity in the pipeline is exactly equal to the velocity at its axis, the volume flow rate of the fluid (Q) can be measured from the orifice meter calibration equation: Q = 6.311 x 10-4√h where h is in mm of Hg and Q is in m3/s. The readings of the CTA are correlated in the form : (volt)2 = a + b (velocity)1/2. Determine the constants (a) and (b) in this equation if the voltage readings are 0.284 and 0.323 V respectively when the corresponding orifice meter readings are 77 and 154 mm Hg. (5) (2002)Correct answer is '0.09, 0.252'. Can you explain this answer?.
Solutions for A calibrated orifice meter is used in a pipeline of 103 mm ID to calibrate the probe of a constant temperature hotwire anemometer (CTA). The orifice meter readings are recorded in mm of Hg and the CTA readings in volts. It is independently found that the average velocity in the pipeline is exactly equal to the velocity at its axis, the volume flow rate of the fluid (Q) can be measured from the orifice meter calibration equation: Q = 6.311 x 10-4√h where h is in mm of Hg and Q is in m3/s. The readings of the CTA are correlated in the form : (volt)2 = a + b (velocity)1/2. Determine the constants (a) and (b) in this equation if the voltage readings are 0.284 and 0.323 V respectively when the corresponding orifice meter readings are 77 and 154 mm Hg. (5) (2002)Correct answer is '0.09, 0.252'. Can you explain this answer? in English & in Hindi are available as part of our courses for GATE.
Download more important topics, notes, lectures and mock test series for GATE Exam by signing up for free.
Here you can find the meaning of A calibrated orifice meter is used in a pipeline of 103 mm ID to calibrate the probe of a constant temperature hotwire anemometer (CTA). The orifice meter readings are recorded in mm of Hg and the CTA readings in volts. It is independently found that the average velocity in the pipeline is exactly equal to the velocity at its axis, the volume flow rate of the fluid (Q) can be measured from the orifice meter calibration equation: Q = 6.311 x 10-4√h where h is in mm of Hg and Q is in m3/s. The readings of the CTA are correlated in the form : (volt)2 = a + b (velocity)1/2. Determine the constants (a) and (b) in this equation if the voltage readings are 0.284 and 0.323 V respectively when the corresponding orifice meter readings are 77 and 154 mm Hg. (5) (2002)Correct answer is '0.09, 0.252'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of
A calibrated orifice meter is used in a pipeline of 103 mm ID to calibrate the probe of a constant temperature hotwire anemometer (CTA). The orifice meter readings are recorded in mm of Hg and the CTA readings in volts. It is independently found that the average velocity in the pipeline is exactly equal to the velocity at its axis, the volume flow rate of the fluid (Q) can be measured from the orifice meter calibration equation: Q = 6.311 x 10-4√h where h is in mm of Hg and Q is in m3/s. The readings of the CTA are correlated in the form : (volt)2 = a + b (velocity)1/2. Determine the constants (a) and (b) in this equation if the voltage readings are 0.284 and 0.323 V respectively when the corresponding orifice meter readings are 77 and 154 mm Hg. (5) (2002)Correct answer is '0.09, 0.252'. Can you explain this answer?, a detailed solution for A calibrated orifice meter is used in a pipeline of 103 mm ID to calibrate the probe of a constant temperature hotwire anemometer (CTA). The orifice meter readings are recorded in mm of Hg and the CTA readings in volts. It is independently found that the average velocity in the pipeline is exactly equal to the velocity at its axis, the volume flow rate of the fluid (Q) can be measured from the orifice meter calibration equation: Q = 6.311 x 10-4√h where h is in mm of Hg and Q is in m3/s. The readings of the CTA are correlated in the form : (volt)2 = a + b (velocity)1/2. Determine the constants (a) and (b) in this equation if the voltage readings are 0.284 and 0.323 V respectively when the corresponding orifice meter readings are 77 and 154 mm Hg. (5) (2002)Correct answer is '0.09, 0.252'. Can you explain this answer? has been provided alongside types of A calibrated orifice meter is used in a pipeline of 103 mm ID to calibrate the probe of a constant temperature hotwire anemometer (CTA). The orifice meter readings are recorded in mm of Hg and the CTA readings in volts. It is independently found that the average velocity in the pipeline is exactly equal to the velocity at its axis, the volume flow rate of the fluid (Q) can be measured from the orifice meter calibration equation: Q = 6.311 x 10-4√h where h is in mm of Hg and Q is in m3/s. The readings of the CTA are correlated in the form : (volt)2 = a + b (velocity)1/2. Determine the constants (a) and (b) in this equation if the voltage readings are 0.284 and 0.323 V respectively when the corresponding orifice meter readings are 77 and 154 mm Hg. (5) (2002)Correct answer is '0.09, 0.252'. Can you explain this answer? theory, EduRev gives you an
ample number of questions to practice A calibrated orifice meter is used in a pipeline of 103 mm ID to calibrate the probe of a constant temperature hotwire anemometer (CTA). The orifice meter readings are recorded in mm of Hg and the CTA readings in volts. It is independently found that the average velocity in the pipeline is exactly equal to the velocity at its axis, the volume flow rate of the fluid (Q) can be measured from the orifice meter calibration equation: Q = 6.311 x 10-4√h where h is in mm of Hg and Q is in m3/s. The readings of the CTA are correlated in the form : (volt)2 = a + b (velocity)1/2. Determine the constants (a) and (b) in this equation if the voltage readings are 0.284 and 0.323 V respectively when the corresponding orifice meter readings are 77 and 154 mm Hg. (5) (2002)Correct answer is '0.09, 0.252'. Can you explain this answer? tests, examples and also practice GATE tests.