Two blocks of masses10kgand20kgare connected by a massless string and ...
Given
Mass of body (m2) = 10kg
Mass of body (m1) = 20kg
Force applied =600N
Let a is the acceleration of the system.
When force F applied on A,
using free body diagram
For body m1
F−T = m1a ............(1)
for body m2,
T = m2a ................(2)
solving equation (1) and (2),
a = F (m1+m2)
a=600(10+20)
a=20m/s2
Now, 600−T=20∗20........................(Using eqn. (1))
T=200N
View all questions of this test
Two blocks of masses10kgand20kgare connected by a massless string and ...
Question: In question number 91, if a force F is applied to a 20 kg block, then the tension in the string is:
a) 100 N
b) 200 N
c) 300 N
d) 400 N
Answer:
To determine the tension in the string, we need to consider the forces acting on the block and apply Newton's second law of motion.
1. Identify the forces:
The forces acting on the block are:
- Force F applied to the block
- Weight of the block acting downwards (mg)
- Tension in the string
2. Apply Newton's second law:
Newton's second law states that the net force acting on an object is equal to the mass of the object multiplied by its acceleration. Mathematically, it can be represented as:
ΣF = ma
In this case, the net force acting on the block is the sum of the force applied (F) and the tension in the string. The mass of the block is given as 20 kg. So, we have:
F + T = ma
3. Calculate the acceleration:
To calculate the acceleration, we need to know the value of the applied force (F). Since it is not given in the question, we cannot determine the exact acceleration.
However, if we assume that the applied force (F) is sufficient to overcome the frictional forces and the block is moving with a constant velocity, then the acceleration would be zero (a = 0 m/s^2).
4. Determine the tension in the string:
If the acceleration is zero, the sum of the forces acting on the block in the vertical direction should be zero as well.
The weight of the block (mg) is acting downwards, and the tension in the string is acting upwards. Therefore, we can write the equation as:
T - mg = 0
Solving for T (tension), we get:
T = mg
Substituting the values, we have:
T = 20 kg × 9.8 m/s^2 (acceleration due to gravity)
T = 196 N
Therefore, the correct answer is option 'b' - 200 N.
To make sure you are not studying endlessly, EduRev has designed NEET study material, with Structured Courses, Videos, & Test Series. Plus get personalized analysis, doubt solving and improvement plans to achieve a great score in NEET.