Question Description
An n-type silicon sample is uniformly illuminated with light which generates 1020 electron hole pairs per cm3 second. The minority carrier lifetime in the sample is 1 μs. In the steady state, the hole concentration in the sample is approximately 10x, where x is an integer. The value of x is___a)4b)14c)2d)12Correct answer is option 'B'. Can you explain this answer? for GATE 2024 is part of GATE preparation. The Question and answers have been prepared
according to
the GATE exam syllabus. Information about An n-type silicon sample is uniformly illuminated with light which generates 1020 electron hole pairs per cm3 second. The minority carrier lifetime in the sample is 1 μs. In the steady state, the hole concentration in the sample is approximately 10x, where x is an integer. The value of x is___a)4b)14c)2d)12Correct answer is option 'B'. Can you explain this answer? covers all topics & solutions for GATE 2024 Exam.
Find important definitions, questions, meanings, examples, exercises and tests below for An n-type silicon sample is uniformly illuminated with light which generates 1020 electron hole pairs per cm3 second. The minority carrier lifetime in the sample is 1 μs. In the steady state, the hole concentration in the sample is approximately 10x, where x is an integer. The value of x is___a)4b)14c)2d)12Correct answer is option 'B'. Can you explain this answer?.
Solutions for An n-type silicon sample is uniformly illuminated with light which generates 1020 electron hole pairs per cm3 second. The minority carrier lifetime in the sample is 1 μs. In the steady state, the hole concentration in the sample is approximately 10x, where x is an integer. The value of x is___a)4b)14c)2d)12Correct answer is option 'B'. Can you explain this answer? in English & in Hindi are available as part of our courses for GATE.
Download more important topics, notes, lectures and mock test series for GATE Exam by signing up for free.
Here you can find the meaning of An n-type silicon sample is uniformly illuminated with light which generates 1020 electron hole pairs per cm3 second. The minority carrier lifetime in the sample is 1 μs. In the steady state, the hole concentration in the sample is approximately 10x, where x is an integer. The value of x is___a)4b)14c)2d)12Correct answer is option 'B'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of
An n-type silicon sample is uniformly illuminated with light which generates 1020 electron hole pairs per cm3 second. The minority carrier lifetime in the sample is 1 μs. In the steady state, the hole concentration in the sample is approximately 10x, where x is an integer. The value of x is___a)4b)14c)2d)12Correct answer is option 'B'. Can you explain this answer?, a detailed solution for An n-type silicon sample is uniformly illuminated with light which generates 1020 electron hole pairs per cm3 second. The minority carrier lifetime in the sample is 1 μs. In the steady state, the hole concentration in the sample is approximately 10x, where x is an integer. The value of x is___a)4b)14c)2d)12Correct answer is option 'B'. Can you explain this answer? has been provided alongside types of An n-type silicon sample is uniformly illuminated with light which generates 1020 electron hole pairs per cm3 second. The minority carrier lifetime in the sample is 1 μs. In the steady state, the hole concentration in the sample is approximately 10x, where x is an integer. The value of x is___a)4b)14c)2d)12Correct answer is option 'B'. Can you explain this answer? theory, EduRev gives you an
ample number of questions to practice An n-type silicon sample is uniformly illuminated with light which generates 1020 electron hole pairs per cm3 second. The minority carrier lifetime in the sample is 1 μs. In the steady state, the hole concentration in the sample is approximately 10x, where x is an integer. The value of x is___a)4b)14c)2d)12Correct answer is option 'B'. Can you explain this answer? tests, examples and also practice GATE tests.